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To avoid the unit inconsistency problem in the conventional Jacobian matrix, new for- 

mulation of a dimensionally homogeneous inverse Jacobian matrix for parallel manipulators 

with a planar mobile platform by using three end-effector points was presented (Kim and Ryu, 

2003). This paper presents force relationships between joint forces and Cartesian forces at the 

three End-Effector points. The derived force relationships can then be used for analyses of 

the input/output  force transmission. These analyses, forward and inverse force transmission 

analyses, depend on the singular values of the derived unit consistent Jacobian matrix. Using 

the proposed force relationship, a numerical example is presented for actuator size design of a 

3-RRR planar parallel manipulator. 
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Nomenc la ture  
: Three distinct and noncollinear End-  

Effector (EE) points ( j = l ,  2, 3) 

O Center of the base reference frame 

C Center of the mobile frame 

x, y, z Axes of the base reference frame 

x', y', z '  Axes of the mobile reference frame 

attached to the mobile platform 

A~ Center of the base universal joint of 

leg i 

Bi : Center of the plattbrm universal (or 

spherical) joint of leg i 

q : The vector defined by the coordinates 

of three EE points describing the 

motion of the mobile platform (e.g. 

q =  [xl, Yt, zl, x2, Y2, z2, x3, Y3, z3] r) 
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li,1, li, z 
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FI, F2, F3 : 

r 
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Vc, tO 

The coefficients that are functions of 

the geometry of the mobile platform 

joints Bi and the pre-selected three 

points T~ 

The magnitude of the actuating length 

The unit vector of articular coordinate 

i 
Time differentiation of three EE with 

respect to the fixed world coordinate 

system 

Vector of articular coordinates, 

A=EA, &, A3, A~, A, &]T 
Jacobian matrix of the manipulator 

The link lengths 

The minimum and maximum singular 

values of the Jacobian matrix 

The external forces acting on three 

points 

The joint forces 

The constraint Jacobian matrix 

The twist of end effector (C) 
° 

The linear velocity and angular ve- 

locity of the center of the mobile 
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Jq 

JA~ Jx 

F ex~ 

R 

Lame 

(9X6) transformation matrix that is 

mapping between the twist of end 

effector and the Cartesian velocity of 

three EE points 

The conventional non-homogeneous 

(6×6) inverse and forward Jacobian 

matrices 

The external Cartesian forces at three 

EE point 

Rotation matrix mapping the coor- 

dinates from the base frame to the 

mobile frame 

1. Introduction 

In order to avoid unit inconsistency problem 

in the conventional Jacobian matrix for parallel 

manipulators, Kim and Ryu (2003) proposed a 

new inverse Jacobian formulation based on the 

three End-Effector (EE) point coordinate. The 

derivation was based on a velocity relationship 

between actuator joint space and Cartesian space 

that is composed of three EE point coordinates. 

However, a question arises: can this new Jaco- 

bian be used to describe the force relationship 

between the joint and Cartesian spaces? This 

paper answers the question by presenting the 

force relationship between actuator joint forces 

and Cartesian tbrces at three EE points. 

Tsai (1999) and Asada (1986) had derived 

force relationship between joint forces and Car- 

tesian forces. In this paper, however, we introduce 

a different approach. We utilize the coordinates 

of three different points at the end-effector to 

characterize the kinematic and force relation- 

ship. This gives a solution to the unit inconsis- 

tency problem in the conventional Jacobian ma- 

trix. Based on this idea we present a new for- 

mulation of force relationships between actuator 

joint forces and Cartesian forces. 
When a parallel manipulator executes a given 

task, such as grinding, grasping, brushing, lifting 

up, and so on, its end-effector exerts forces and 

moments on workpiece. These forces and mo- 

ments are generated by actuators of the parallel 

mechanism in the joint space. Hence, finding 

force relationship between task and joint spaces 

is a practical and basic requirement in the design 

and control of robot manipulators. The force 

relationship can then be used for analysis of the 

input/output force transmission. These kinetos- 

tatic performance analyses can provide essential 

information (Kosuge et al., 1993 ; Kim and Choi, 

1999, 2001 ; Choi, 2003) such as how much task 

forces can be produced by applied actuator forces. 

They also provide a basis for structural design 

of the links and bearings of a robot manipulator 

and for selection of appropriate size of actua- 

tors. For physically meaningful force relation- 

ship, however, unit consistency of Jacobian ma- 

trix is necessary, since the force transmission 

analysis depends on the singular values or condi- 

tion number of j j r  (as discussed in Section 3) 

(Kim and Choi, 1999, 2001 ; Doty et al., 1993, 

1995). 

This paper is organized as follows; Section 

2 describes inverse and forward force relation- 

ships between the joint and the Cartesian spaces 

at three EE points based on the dimensionally 

homogeneous Jacobian matrices. The next sec- 

tion presents force transmission analyses with the 

derived force relationships. Section 4 illustrates a 

numerical example to select actuators based on 

the previous inverse force transmission analysis 

method. Conclusions are presented in the last 

section. 

2. Force Relationships Between Joint 

and Cartesian Spaces 

2.1 Inverse force relationship 
Consider a general 6-6 parallel manipulator 

with a planar mobile platform as shown in Fig. 1. 

Here, the platform joints B i ( i = l ,  2, "-, 6) are 

assumed on the same moving plane while the 

base joints denoted by Ai  are not necessarily 

on a plane. Let q be the vector defined by the 

coordinates of three EE points describing the 

motion of the mobile platform: 

q =  [Xl, yx, zl, x2, y2, z2, x3, y3, z3] r (1) 

Since B~ and Tj points are on the same plane 

of a mobile platform, the coordinates of the 
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Fig. 1 6-6 General parallel manipulator (GPM) 

Fig. 2 
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Representing the coordinates of the plat- 
form joints in the coordinates of the three EE 
points 

platform joints B,  in the absolute coordinate 

flame can easily be expressed in terms of the 

coordinates of the three EE points (Fig. 2) as 

[ k~,lxl + ki,2x2 + k~,axa- 
OBi=|k iay l+ki ,2y2+ki ,  sys , i = l ,  "", 6 (2) 

I [ ki, lZl + ki.2z2 + ki,s~s 

where k ~ j ( i = l ,  2, ..-, 6 ;  j = l ,  2, 3) are dimen- 

sionless constants and k~,x+k~.z+ki, s= l .  Indeed, 
this is true because 

OBi = OTs + kiaTsT1 + k~,zTsT2 (3) 

Note that if all of the platform joints are not 

coplanar with the three points, the expression in 

Eq. (2) will he more complicated and the fol- 
lowing derivation should be changed substantial- 

ly. 
The coefficients ki.~ in Eq. (3) are functions 

of the geometry of the mobile platform joints 

B~ and the pre-selected three points ~ .  If the 

global vectors are transformed to the local mov- 

ing reference flame, Eq. (3) can be written as 

B~.= ki.lT~ + ki,2T~ + (1 - k i . l - k~ .2 )T;  (4) 

where B~ and T~. points are (2×1)  constant 

vectors with x '  and y '  coordinates in the reference 

flame fixed on the mobile platform. Rewriting 

Eq. (4) gives 

B;.-T;= k~.l ( T I - T ~ )  + ki,2 ( T ~ -  Ts') 
(5) 

i = l ,  2, ..., 6 

Then, for each i, the two unknowns (ki, l and 

ki,2) in Eq. (5) can be obtained in terms of 

constant Bi  and T;- coordinates as long as the 

three EE points are distinct and noncollinear. 

The practical choice of three points, however, is 

governed in part by numerical conditioning of 

Eq. (5). Since equilateral triangular layout of 

three points with the triangle center being at 

the geometric center of  B~ points generates 

good numerical conditions, it is recommended 

for the optimal design of an axi-symmetrical  

mobile platform (Kim and Ryu, 2003). 

The new Jacobian matrix by using the three EE 

points can be derived as follows : First, consider 

the 6-dof  Gough-Stewart  parallel manipulator  

which has six translational actuators. The inverse 

kinematic relationship from the motion of the 

moving platform to the actuator lengths can easily 

be derived as 

A iBi =/~ini = ki, lOT1 + k/,20T2 + k~,3OTs - OA i 
(6) 

= k~,~tl + k~2t2 + ki,3t3-at 

where ,~i is the magnitude of the actuating length 

and ni is a unit vector. Time differentiation of 

Eq. (6) with respect to the fixed world coordinate 

system gives 

,~m~+ A~ft~=k~at + k~,2t2+ ki, st3 (7) 

where t =  [21, Yi, 2i]  r 

Since ni is a unit vector, n r n ~  = 1 and nrr l i  = 

0. Therefore, multiplication of n r with Eq. (7) 

gives 

Ai=kianrt~ + ki,2nrta+ k~,Snrta (8) 

The velocity relationship between actuator joint  



Force Transmission Analyses with Dimensionally Homogeneous Jacobian Matrices for Parallel... 783 

space and Cartesian space that is composed of 

three EE point coordinates can then be expressed 

as (Kim and Ryu, 2003) 

where 

and 

A = J c l  (9) 

A = [/~1, A2, As,/~, ~s, ~ ]  r 
Fig. 3 

F2  

F, T 2 ~  

................................. F3 

T c2 

External forces at three EE points on mobile 
platform 

cl = [21, ~;'1, 21, 22, ~2, z2, x3, :93, ~3] r 

This inverse Jacobian matrix J is an actual 

Jacobian, i.e., a matrix of partial derivatives of 

Cartesian coordinates with respect to the joint  

variables. If the three EE points are on the 

plane in which B~ points are located, the matrix 

J then can be compactly given as 

j =  

k~.~n[ kl.2n[ k,.3n[- 
k~.ln~" k2anf k2.3n~ 
k3,1n~ ka,2n~ k3.3n~" 
k4.1n4 ~ k4.2n~ k4.3n4 T 
ks.ln~ ks.2n[ ks.3n~" 
k6.1n~" k6.2n~ k6.3n/ 

(10) 

where ni  denotes the unit vectors along vector 

A i B i  and ki,j are constants. Note that all ele- 

ments in the new (6×9)  Jacobian matrix are 

dimensionless because kz.j and unit vectors are 

dimensionless. Note also that it can be shown 

that we can have a dimensionally homogeneous 

Jacobian matrix even if the three EE points are 

not coplanar with Bi  points. In this general spat- 

ial parallel manipulators case, however, more 

complicated derivation is necessary (e.g., Eqs. (2) 

and (5) should be modified),  as mentioned by 

Kim and Ryu (2003). 

In order to derive a new force relationship 

between actuator joint  forces and Cartesian forc- 

es at three EE points, it is assumed that every 

force and moment on the mobile platform is 

decomposed into point forces (F~, F2, F3) at three 

points (T1, T2, T3) that may be considered as 
three grasping points or three connecting joints 

to the mobile platform (say; B1, B3, Bs) as 

shown in Fig. 3. Note that the decomposition 

is not unique. In the conventional force rela- 

tionship, joint  space forces are mapped into 

Cartesian space forces as a combination of three 

translational forces at the origin of mobile plat- 

form reference frame and three torques about the 

local reference frame axes. In this case, the Jaco- 

bian loses its dimensional homogeneity. From 

Eq. (9) the virtual displacement relationship can 

be written as 

3A = J 3 q  (1 1) 

Then, virtual work principle can be stated as 

3W = r r 3 A - - F r ~ q = 0  (12) 

where the force vector F includes every internal 

or external force that is applied equivalently at 

three EE points. 

Inserting Eq. (11) into Eq. (12) gives 

( r r J  - F  r) 6'q = 0  (l 3) 

The elements in the virtual displacement vector 

3q are not independent due to the following 

distance constraints : 

a)~= ( T i - T ~ )  r (T,--T~) - c ~ = O  (14) 

for (i, j ) = ( 1 ,  2), (2, 3), (3, 1) 

where ci's are the constant distances between Ti 

and T~ points. 

Therefore, 

3 0 =  a~q3q = 0  (15) 

where aJq can be expressed as 
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( X l - - X 2 )  0 - -  ( X 3 - - X 1 )  

(Y~--3'2) 0 -- (Ya-- Y~) 
( z~ - z~) o - ( z ~ -  z~) 

- ( x l - x ~ )  ( x ~ - x 3 )  o 

-- (Yl--Y2) (Y2--Y3) 0 
- ( z ~ - z ~ )  ( z ~ - z ~ )  o 

0 - ( x ~ - x 3 )  ( x 3 - x l )  

0 -- (Y2--Y3) (Y3--Yl)  

o - ( a - z 3 )  ( z ~ - z ~ )  

(16) 

From Eqs. (13) and (15), the Lagrangian multi- 

plier theorem (Haug, 1989) states that 

( r r J - F r + a r ~ q )  c~q=0 (17) 

where a is the (3 × 1) Lagrangian multiplier vec- 

tor that can be physically interpreted as the 

constraint reaction forces among the three rigid 

points on the mobile plattbrm. 

Since Eq. (17) is true for any arbitrary 6'q 

vector, the Cartesian forces are represented as 

Fig. 4 

./3~; ...... 

Self-canceling internal forces at three EE 
points on mobile platform 

Theretbre, only the term J r r  is directly related 

to the external Cartesian forces at three EE 

points and Eq. (18) can be restated as 

Fext = J r r  (20) 

Since the unit consistent Jacobian matrix is 

used in Eq. (20), this equation can be used in 

the optimal design and control of parallel mani- 

pulators without any scale-varying problems. 

F = J r r +  !i~ra (18) 

From Eq. (16), the second term in Eq. (18) can 

be rewritten as 

g)qTa= 

a, ( x , - x 2 )  - a3 ( x 3 - x l )  

al  ( y l -  y2) - a3 ( y 3 - y l )  
a l  ( z l -  z2) - a3 ( z 3 -  z~) 

- a~ ( x l - x 2 )  - a~ ( x 2 - x 3 )  

--  a, ( Yl --  Y2) --  az (Y2-- Y3) 

- -  a l  (~'1 - -  ~'2) - -  1~2 (Z2  - -  ,~3) 

- a~ ( x ~ - x ~ )  - a3 ( x ~ - x ~ )  

- -  0/2 ( y 2  - -  Y3) - -  a 3  ( 2 3  - -  Y l )  

- a~ ( z ~ -  z3) - a~ ( z ~ -  z~) 

alf12 ~- aafl3] 

~2f23 "f- alf21[ 

a3f3, + a2f32J 

(19) 

where the force vector f~j acts along the TiT~ 

line as shown in Fig. 4. Therefore, these forces 

are in a single plane and are self-equilibrated 

(self-canceled). 
The fact that the term ~ r a  is a self-canceling 

internal force vector means that this term has no 

relationship with the external Cartesian forces at 

three EE points. 

2.2 Forward force relationship 
Joint forces may be obtained from Eq. (20) 

that can be rewritten in a linear equation form 

a s  

J r r = F e x t  (21) 

where j r ~ n × m  t ~ , ~  m, and F e x ~  n. This 

equation, however, represents an overdetermin- 

ed system of linear equations. For convenience, 

this equation can be modified to an underdeter- 

mined system using the other "direction" of the 

mapping (Gosselin, 1992) that is more useful for 

the forward lbrce transmission problem. 

The end effector (C) of a GPM is shown in 

Fig. I where the reference frame ~ ( O - x y z )  

is fixed to the base of the GPM while frame 

• " ( O ' - - x ' y ' z ' )  is attached to the origin of the 

mobile plate. The twist of end effector (C) can 

be defined as 

• - -  v T  Xc--[ c, tor~r (22) 

where vc is the velocity of the origin of the mo- 

bile frame and stands for the angular velocity 

vector of the plattbrm. 

Now, in order to obtain the new transforma- 

tion Jacobian matrix that is mapping from the 
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twist of end effector (C) to the Cartesian velocity 

of three EE points T~( j= I ,  2, 3), we should 
derive the kinematic relationship between vectors 
xc and dl. This can be written as 

d l=Jqxc (23) 

where Jq is a (9 ×6) transformation matrix. The 
position vectors of three EE points with respect 
to O' will be given by 

T~=[O'Tj] .~ .=[x},  y}, z~] r, ( j = l ,  2, 3) (24) 

where the prime means that the vector is re- 
presented with respect to the body reference 
frame. 

Let the rotation matrix representing the change 
of coordinates from ~ '  to • be denoted by R 
matrix. The R matrix can be written as 

[ ru rlz r131 
R : [  7"21 7"22 7"23] (25) 

L r31 r32 r33 

The position vectors of three EE points with 
respect to O will be given by 

Ts=[OT~.]m=[x j ,  yj, zs] r, ( j = l ,  2, 3) (26) 

Therefore, the velocity equations will be given by 

[i;~]~= [.~, .g j, zj] (27) 
=[v~],~+Eo~×Tv]~, ( j = l ,  2, 3) 

which leads to a transformation matrix in Eq. 
(28) 

I00 0 (rs~x; +r=yi'r~d) -(rz,xi + rny; +r~z() 
010 -~r3d+r=y;+r~z;: 0 (rllx;+r~y;+r13z;) 
001 (r2ax[+r~yi+r~zO -(rllxi+rLz3~+~q3zl) 0 
100 0 (r~,x~+r=yffr~) -(rz,x~+r=y~+r~) 

Jq= 010 -'.r3~x~+r~y~-rr~ 0 ir~,x~+r, yffru~) (28) 

1 O0 0 (h,x~+r,~y~+,r~) -r21.r~+ra.f~+rM) 

Then, by using the notation of  (Gosselin, 1990), 
the standard velocity equations of the parallel 
manipulator can be written as 

J~A =J~:~¢ (29) 

where JA and J~ are the conventional non-homo- 
geneous (6X6) inverse and forward Jacobian 

matrices. 
These matrices are expressed as 

j x =  [nzr (b2 ×nz) and 

In ! i o/ 
2 (b6 xn6) 

Ja  =E6×6(6 X 6 identity matrix) 

where ni and b~ denote the unit vectors along 
vector A,B~ and vector CB~, respectively. 

The latter equation can also be written as 

Xc=J;1JAA (31) 

Then, by premultiplying Eq. (23) by matrix Jq, 

it becomes 

q = J q J ; I J A A  = J ~ A  (32) 

where matrix J3 is then a (9X6) matrix, the 
dimensional homogeneity of which can be veri- 
fied by the MAPLE Software. Note that this 
forward Jacobian matrix can not be defined for 

the singular configurations that can be manifest- 
ed by J ; '  

The virtual work principle can be stated for 

Eq. (32) as 

3 W =  r r S A - F r 3 q  = r r 3 A - F r J ~ $ A  = 0  (33) 

Since the components of vector 3A are inde- 
pendent, it can be simply written as 

T 
r = J . ~ F  (341) 

which is an underdetermined system of linear 
equations. 

3. Force Transmission Analyses 

Input/output force (or velocity) transmission 
capabilities are important in kinetostatic per- 
formances of robotic manipulator for design and 
control. There are two input/output force trans- 
mission analyses : the forward force transmission 
analysis to determine the magnitude bounds of 
the force vector at three EE points for given 
magnitude of joint actuator forces or torques 
and the inverse force transmission analysis to 
determine the magnitude bounds of joint ac- 
tuating forces for the given magnitude of the 
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Cartesian force. This section presents force trans- 

mission analyses based on the previously derived 

dimensionally homogeneous Jacobian matrix. 

3.1 Inverse force transmission analysis 
The inverse force transmission analysis can 

provide a basis for sizing links and bearings of  a 

robot manipulator and for selecting appropriate 

force size of actuators. The inverse force trans- 

mission analysis can be formulated as 

2 T T T~ II Fext II =FextFext=r J J  (35) 

where [1" II denotes the Euclidean norm of  a vector. 

Eq. (35) shows that the actuator joint  forces 

form an hyperellipsoid in the Euclidean space 

which lies in the directions of eigenvectors of the 

j j r  matrix and the joint  force II r II bounds for 

the given Cartesian force II Fex~ II are given by the 
square roots of the singular values of  the j j r  

matrix : 

aminll Fex~ 11~11 r 11 < ~x l l  Fext II (36) 

where amJn and O'max stand for the minimum and 

the maximum singular values of the dimension- 

ally homogeneous J matrix. If II Fe~t II is the 

magnitude of the required Cartesian force, the 

magnitude of  actuator's force should be larger 

than O'minll Fext II. Singular values in Eq. (36) can 

be computed by the SVD (singular value decom- 

position) theorem (Kadama and Suda, 1978; 

Yoshikawa, 1985). Note that these results are 

invariant to changes of units since the used 

Jacobian is dimensionally homogeneous. 

3.2 Forward force transmission analysis 
The forward force transmission analysis pro- 

vides the extreme magnitudes and their direc- 

tions of the output threes for given joint  forces. 

The magnitude bounds of input joint  forces can 

be given as 

IIr 112=rTr-< 1 (37) 

Finally, the extreme magnitudes and their direc- 
tions of the output forces for given joint  forces 

can be obtained as 

II r II 2= r r r=Fr j .~ J ,~F  (38) 

Eq. (38) shows that the Cartesian forces at three 

EE points on the mobile platform form an 

hyperellipsoid in the Euclidean space which lies 
J r in the directions of eigenvectors of the ~1~ 

matrix. Then the output three bounds for 11 F 11 

with respect to input force 11 r 11 are given by the 

square roots of the singular values of the ,Jz,Jf 
matrix : 

63mln[I r I1~]1 F I1~ O'qmax]l 't" I1 (39) 

where O',~mln and Oamax stand for the minimum 

and the J,~ maximum singular values of the 

matrix. Note that since the force ellipsoid is 

based on the dimensionally homogeneous Jaco- 

bian, the mapping does not change with changes 

of scale. 

4. A Numerical  Example of Actuator 
Size Selection 

As an application example of the previous 

input/output  force transmission analyses, this 

section presents an actuator size selection pro- 

blem for a simple 3 -RRR planar  parallel mani- 

pulator that is shown in Fig. 5 in which the 

actuated joints are denoted by Ai and the pas- 

sive revolute joints at the mobile platform are 

denoted by Bi. Link lengths are denoted by li,1 

and /i,z(i =1,  2, 3) and radii to the joints A~ 
or Bi from the origin of reference frames are 

denoted by r~ or rb, respectively. In this case, 

we can select three EE points T~.( j=I ,  2, 3) as 

connecting joint  points B ~ ( i = I ,  2, 3) and can 

derive a consistent (3 X6) dimensionally homo- 

geneous Jacobian matrix of 3 -DOF planar par- 

allel manipulator (Kim and Ryu, 2003). 

Now, we select appropriate size of actuators 

that guarantees force transmission capabili ty of 

given Cartesian forces at any arbitrary configura- 

tion in the entire workspace. In this example, we 

consider only the constant-orientation workspace 
shown in Fig. 5. 

The constant-orientation workspace (or trans- 

lation workspace) is defined as the set of loca- 
tions of the mobile platform center that may be 

reached when its orientation is fixed (Merlet, 
1998a; Merlet et al., 1998b; Gosselin, 1996). 
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/" c'~mst~.~ttl-orteng¢l fto t~. \ 

"~",. ,./'t' i 

Fig. 5 Constant-orientation workspace for 3-RRR 
parallel manipulator 

Table 1 Dimensions of  3 -RRR parallel mani- 
pulator 

Icl 150 mm 

l~,2 150 m m 

r~ 300 mm 

rb 100 mm 

When the unit  magni tude of Cartesian force is 

required, the magni tude of actuator 's  force should 

be larger than O'mm in Eq. (36) at every point  in 

the t ranslat ional  workspace. Selection of actua- 

tor size is then to find the maximum O'mln value in 

the entire workspace. In other words, 

II r ll~max{ am,~(V) }'II F~x, II (40) 

where V represents whole t ranslat ional  work- 

space of the manipulator .  

Figure 6 shows O'm~n values on the entire trans- 

lat ional  workspace. 

Figure 7 shows the configurat ion of 3 - R R R  

parallel  manipula tor  at the maximum value of 

0"rain(V) that occurs at the boundary  of the 

workspace. F rom this result, we could conclude 

that the size of actuators should be larger than 

0.017 N - m  to generate unity magni tude of Car- 

tesian force vector (i.e., II ~ext II--1 N).  

r - ~  

... ' , . ,  
' " I  l 

/ "  " " l 

/i" , " , , , i  i : l :  ' 
.,,", ", .. '-'..", ':.": : i. . : : ~  : .: / '  ,,', ,,. ,!:~-z_~ i : : 

° ° ,5 \ , ,  ,.,;. ,i? . ~  I N N l ~ s - ~  

~. o o,o~' v ~ m I ! r / '  " i o 
~ ~g,\i;, " ' ,,,~ I F  ~ - / " 

~, ooo7~._  - . • / ~r- ~ -.~0 
0~I~3 ~ - . ',Imm . " i~ -,- 

.IO,B -'---.,.._ • /- 

/ 
5o ~'~-~,...~/- .~5c 

x 
:50 

Fig. 6 (~mln in whole constant-orientation workspace 

/ /  
/ 

/ 

Fig. 7 The manipulator configuration at max{ O'mln 

v/} 

5. Conclusions 

In this paper, we derived the relationship be- 

tween jo in t  forces of parallel  manipula tor  and 

Cartesian forces at three EE points on the mo- 

bile platform. This derivation is based on the 

proposed unit  consistent Jacobian matrix (Kim 

and Ryu, 2003). Using this force relationship, 

we presented inpu t /ou tpu t  force transmission 

analyses : forward and inverse force transmission 

analyses. An example of selecting actuator size 

of 3 - R R R  planar  parallel manipula tors  has been 

presented when the unit  magni tude of Cartesian 

force vector is required. Since this force transmis- 
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sion analysis depends on the singular values of  

the Jacobian matrix, the proposed dimensionally 

homogeneous Jacobian can be useful for it. 
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